AKAR2-AKAP12 fusion protein "biosenses" dynamic phosphorylation and localization of a GPCR-based scaffold
نویسندگان
چکیده
BACKGROUND The cAMP-dependent protein kinase A (PKA) plays a pivotal role in virtually all cells, there being a multitude of important target molecules that are substrates for PKA in cell signaling. The spatial-temporal dynamics of PKA activation in living cells has been made accessible by the development of clever biosensors that yield a FRET signal in response to the phosphorylation by PKA. AKAR2 is genetically encoded fluorescent probe that acts as a biosensor for PKA activation. AKAP12 is a scaffold that docks PKA, G-protein-coupled receptors, cell membrane negatively-charged phospholipids, and catalyzes receptor resensitization and recycling. In the current work, the AKAR2 biosensor was fused to the N-terminus of AKAP12 to evaluate its ability to function and report on dynamic phosphorylation of the AKAP12 scaffold. RESULTS AKAR2-AKAP12 can be expressed in mammalian cells, is fully functional, and reveals the spatial-temporal activation of AKAP12 undergoing phosphorylation by PKA in response to beta-adrenergic activation in human epidermoid carcinoma A431 cells. CONCLUSION The dynamic phosphorylation of AKAP12 "biosensed" by AKAR2-AKAP12 reveals the scaffold in association with the cell membrane, undergoing rapid phosphorylation by PKA. The perinuclear, cytoplasmic accumulation of phosphorylated scaffold reflects the phosphorylated, PKA-activated form of AKAP12, which catalyzes the resensitization and recycling of desensitized, internalized G-protein-coupled receptors.
منابع مشابه
“Shaping” of cell signaling via AKAP-tethered PDE4D: Probing with AKAR2-AKAP5 biosensor
UNLABELLED BACKGROUND PKA, a key regulator of cell signaling, phosphorylates a diverse and important array of target molecules and is spatially docked to members of the A-kinase Anchoring Protein (AKAP) family. AKAR2 is a biosensor which yields a FRET signal in vivo, when phosphorylated by PKA. AKAP5, a prominent member of the AKAP family, docks several signaling molecules including PKA, PDE...
متن کاملHypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells.
Scaffold proteins are critical hubs within cells that have the ability to modulate upstream signaling molecules and their downstream effectors to fine-tune biological responses. Although they can serve as focal points for association of signaling molecules and downstream pathways that regulate tumorigenesis, little is known about how the tumor microenvironment affects the expression and activit...
متن کاملAKAP12 mediates PKA-induced phosphorylation of ATR to enhance nucleotide excision repair
Loss-of-function in melanocortin 1 receptor (MC1R), a GS protein-coupled receptor that regulates signal transduction through cAMP and protein kinase A (PKA) in melanocytes, is a major inherited melanoma risk factor. Herein, we report a novel cAMP-mediated response for sensing and responding to UV-induced DNA damage regulated by A-kinase-anchoring protein 12 (AKAP12). AKAP12 is identified as a n...
متن کاملG protein-coupled receptor kinase 2-mediated phosphorylation of ezrin is required for G protein-coupled receptor-dependent reorganization of the actin cytoskeleton.
G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible ...
متن کاملEnhanced Cardiac Function in Gravin Mutant Mice Involves Alterations in the β-Adrenergic Receptor Signaling Cascade
Gravin, an A-kinase anchoring protein, targets protein kinase A (PKA), protein kinase C (PKC), calcineurin and other signaling molecules to the beta2-adrenergic receptor (β2-AR). Gravin mediates desensitization/resensitization of the receptor by facilitating its phosphorylation by PKA and PKC. The role of gravin in β-AR mediated regulation of cardiac function is unclear. The purpose of this stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2010